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ABSTRACT 

Time and frequency correlation, root-mean- 
square time histories, and power-spectral density 
analysis techniques are applied not only in perfecting 
communication systems but also in gaining vital infor- 
mation on the chemical and physical nature of things. 
The sophisticated instruments and techniques of the 
present age have made it possible to record, synthe- 
size, and analyze wave data rapidly and in depth. This 
paper examines and discusses some of the major tech- 
niques of wave analysis being applied to the Apollo 
Program, describes the instrumentation involved, 
and provides an illuminating mathematical foundation 
for the analyses. 
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SOME LABORATORY TECHNIQUES OF WAVE ANALYSIS 

WITH APPLICATION TO THE APOLLO PROGRAM 

By Roy A. Watlington 
Manned Spacecraft Center 

SUMMARY 

The Instrumentation and Electronic Systems Division of the NASA Manned 
Spacecraft Center operates an analog data analysis facility concerned with the process- 
ing and presentation of test data in a form yielding a history of recorded test events. 
This service is requested by and provided for organizations which originate tests and 
which design, develop, and mount the necessary instrumentation in the test vehicle to 
record the desired data. The function of the Wave Analysis Laboratory complements 
that of other data reduction organizations by handling those data which yield the most 
useful information when analyzed by analog techniques. An additional service often 
provided is the analog checking of data which have been reduced primarily by digital 
techniques or  by other analog laboratories. 

The laboratory facilities include some of the most advanced equipment in the 
field of analog data analysis. With this equipment and with a trained staff of engi- 
neers and technicians from NASA and a contractor, a number of wave analysis tech- 
niques have been refined and applied to the Apollo Program. The operations inherent 
in these techniques include the following: 

1. The provision of graphical time histories of any test data for "quick look" 
or other purposes 

2. The plotting of spectrograms 

3. The conducting and recording of 1/3-octave analyses 

4. The plotting of autocorrelograms and cross correlograms 

5. The plotting of power spectra and cross spectra 

Furthermore, the ability to conduct reflectivity studies is under development. 



INTRODUCTION 

The laboratory techniques employed at any given moment depend wholly upon the 
mission or missions with which NASA is involved at the time. The procedure in ren- 
dering wave analysis services is reviewed in the following sections. 

Scale models, mock-ups, and boilerplates representing spacecraft to be used on 
manned missions such as the Apollo lunar mission are invaluable in testing the gen- 
eral vehicle configuration for specific features. Tests are conducted to establish 
noise and acceleration levels and to measure stress, strain, temperature, pressure, 
and many other variables. Models of spacecraft are made full size and full weight or  - 
on a reduced scale. They are exposed to the rigors of launching, reentry, and landing 
simulated by drop tests on land or  water and to several other forms of environmental 
tests. Tests with these models have proven to be very reliable for determining the 
values of many types of variables and are economically desirable. 

Test operators determine the best method of measuring some important variable 
and mount devices on the test vehicle which measure and record or  transmit data on 
this variable. Transducers are used to sense changes in some physical quantity (such 
as te'mperature, pressure, o r  acceleration) and a re  capable of transforming the energy 
received into electronic signals which may be recorded by a tape recorder aboard the 
test vehicle. For flight tests, the signals may be transmitted by telemetric equipment 
to listening stations where the signals are recorded. The varying signal voltages from 
the transducers on board the test vehicle are recorded on magnetic tape with the time 
code. Most frequently, a 14-channel magnetic tape is used. At least one channel on 
the tape is reserved for .the signal from each transducer. Furthermore, one channel 
carries the time code, a constant-frequency signal which is amplitude modulated with 
information that makes it possible to correlate events in the test with changes in the 
signal voltages. Recordings of the signal from a signal transducer received at several 
receiving stations are combined to give a complete and continuous record of the signal 
for the duration of the test. Synchronizing the recordings made by the different 
receiving stations is most easily accomplished when all stations are using the same 
time code. Complete tapes of the recorded data are reproduced, and copies are sent 
to various processing organizations. 

In the wave analysis facility, raw test data recorded on magnetic tapes are 
transformed into comprehensible, graphical records. Data may be displayed in a 
variety of ways, depending upon the requirements of those organizations interested 
in the results of the tests. For example, the laboratory can provide either linear- 
linear, log-log, or  semi-log plots as required and can give detail on any segment of 
the data in which an interesting event or  an abrupt, isolated change (called a transient) 
in the data may occur. 

Generally, the organizations conducting the tests provide data processing plans 
which specify the manner in which the data must be displayed. Specifications for the 
scale upon which the data must be plotted, the amount of detail desired in particular 
regions on the tapes, the types of displays required, and the desired time schedule 
are all provided in the plans. However, a certain amount of flexibility in these 
instructions and close 1i.aison between the wave data analyst and the organization con- 
ducting the test make changes in the schedule possible in order to analyze unexpected 
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results appearing in the processed data. The finished data are returned to the test 
operators who interpret the output on their transducers to make conclusions about 
changes in the variables under study. 

This report has been prepared to provide a survey of the techniques of wave 
analysis used in the analog data analysis facility. 

SYMBOLS 

peak amplitude of any constant coefficient 

peak amplitude of the nth component of a set 

bandwidth 

cospectral density function for x and y 

distance 

fundamental voltage 

natural logarithmic base 

frequency, or center frequency (Hz) 

fundamental frequency 

2 gravitational acceleration, 32 ft/sec 

power- spectral density function for x 

cross- spectral density function for x and y 

power-spectral density function for y 

frequency response function of a system 

infinity is upper limit 

rational number (as in Fourier series) or  1 

power, W 
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quadrature - spectr a1 density function QXJJf) 

R resistance 

Re mean-square e r ror  of the system 

Rx(7) autocorrelation function of x 

RXY(7) cross-correlation function of x and y 

RYW autocorrelation function of y 

T averaging o r  observation time, sec 

t time, sec 

V potential difference, V 

V velocity, ft/sec 

x(t), Y (t) time-dependent variables x and y 

r ea1 frequency -dependent variable o r  coherence function 2 
YXy (f) 

A time interval 

6 Dirac delta function 

8 an angle, rad 

7 lag or  delay time, sec 

w angular velocity, rad/sec 

fl o r  8 (f) phase angle, deg o r  rad 
Xy 

Subscripts: 

j 

n 

0 

discrete o r  incremental values of y in respect to rms  

a number times the fundamental frequency 

fundamental o r  initial rate (Hz) as in fo 
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X independent variable of time 

Y dependent variable of y(t) or x 

TYPES OF DATA SIGNALS 

All information-bearing signals may be described in terms of one or more of the 
basic categories of data. Generally, data may be classified as either deterministic or  
random (stochastic). Figure 1 is an organizational chart showing the most basic cate- 
gories for data. The signals which occupy the man- and machine-time in the Wave 
Analysis Laboratory sometimes may f i t  precisely into one of these categories. Very 
often the data being processed exist in a classification comprising two or more of the 
basic groups. 

Figure 1. - Organizational chart. 
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Deterministic Data 

Those data from variables which can be described accurately by a mathematical 
expression and, therefore, are predictable a re  called deterministic. Natural phenom- 
ena such as an apple falling from a tree or the motion of the earth around the sun are ’ 
deterministic processes. Deterministic data may be more precisely discussed under 
one of the following categories. 

* 
Periodic data. - Periodic data are those data from a dependent process or  varia- 

ble which repeats itself after a certain interval in the independent variable (such as 
time or displacement). If the variable is being studied with respect to time, the 
interval after which the dependent process begins to repeat itself is called the period. 

described (for a time-dependent variable) by the mathematical statement 
Sinusoidal periodic data: Sinusoidal periodic data a re  data which may be 

( 1) 

where y(t) is the instantaneous value of the variable, A is the peak amplitude, fo  

is the frequency of its repetition, and 9 is the phase angle. The following relationship 
exists between the frequency and the period T 

1 f = -  
o T  

Complex periodic data: Complex periodic signals a re  composed of a number of 
sinusoidal components in addition to a static component. Complex data for a time- 
dependent variable y(t) may be described by a Fourier series 

n=.o 

n=l n y(t) = A + An COS (3) 

where n = 1,2,3, . . . (an integer); where f is the fundamental frequency; and where 
A is the amplitude of the component which has a frequency of n times fo. The 
sinusoidal components are known as harmonics; the ratio of the frequencies of any two 
harmonics equals a rational number. Complex periodic data a re  more common in nat- 
ural occurrences than are pure sinusoidal data. 

0 

n 

Nonperiodic data. - Nonperiodic data fa l l  into two possible subclassifications. 
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Near periodic data: Those data consisting of a number of sinusoidal components 
the frequencies of which a r e  not multiples of a fundamental frequency are called near 
periodic data. For a time-dependent variable, near periodic data can be described 
mathematically 

n=m 

n= 1 
Y(t) = A n sin(2dnt + 

n =  1 ,2 ,3 , . . .  

(4) 

where the ratios of all possible pairs of component frequencies do not all equal rational 
numbers . 

Transient nonperiodic data: Transient nonperiodic data a r e  produced by a large 
number of various phenomena. Events isolated or  discontinuous in the time domain 
give r ise  to transient data and may be described by equations which have limiting o r  
boundary conditions accompanying them. For example, the following expressions de- 
fine the transient whose time history is shown in figure 2. 

y = A ,  as O s t  s t l  (5 ) 

y = O ,  as t<O;  t > t l  

y(t1 

A 

0 
t 

Figure 2. - A transient process y(t). 

Transient events may have only continuous spectra, unlike the events described by the 
other types of data discussed previously, which have discrete spectra. 
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Random Data 

Events which give rise to random data cannot be described by any particular 
mathematical formula which would be certain to hold true at any two instants of time. 
Such data cannot be predicted precisely and may be described only by a probability 
distribution. Random data are said to be stationary or nonstationary as explained in 
the following paragraphs. 

i 

Stationary random data. - A random process is said to be stationary if each of 
its probability distributions is the same at one time as at another. Alternately, a 
stationary process may have a mean value, a mean-square value, or an autocorrelation 
function as a time invariant. When all three of these moments are constants in time, 
the process is called strongly stationary. If, however, the mean value and the mean- 
square value are constants but the autocorrelation function is dependent on lag time 7, 
the process is called weakly stationary. 

,- 

Nonstationary random data. - The extreme case in which the mean value, the 
mean-square value, and the autocorrelation function are all time-dependent defines 
the nonstationary random process. For such a process, a meaningful description of 
its values can be obtained only by taking averages for every instant of time over the 
entire set of data concerning the process. 

ROOT-MEAN-SQUARE TIME HISTORIES 

Among the services provided by the Wave Analysis Laboratory is the develop- 
ment of y 1  root-mean-square (rms) time histories” of test data recorded on magnetic 
tape (fig. 3). These graphical displays 
consist of plots of rms  values of the signal 
voltage, from a transducer aboard the test 
vehicle, as a function of the time elapsed 
in the test. Time histories of rrns values 
are useful records of net changes in the 
signal for the duration of the test. They 
may be compared to and marked with facts 
known about events in the test. For exam- 
ple, the time when a critical event o r  ac- 
tivity in the test was initiated and when it 
was ended is known and may be indicated 
on the abscissa (x-axis) of the rrns time 
history. In flight tests, the times a t  which Figure 3. - System for root-mean-square 
different activities in a sequence are initi- time history. 
ated correspond to changes in the rrns volt- 
age which are evident in the rrns time history. The magnitude and the nature of the 
changes in signal voltage reveal much about the variance of the parameter being meas- 
ured. 

Figure 4 is a composite plot of several sections of one rms  time history. The 
test was an Apollo flight test. The graph has been marked to show the positions on the 
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time axis at which events such as ignition, separation, and cut-off occurred. Time 
histories of rms  values such as this one are useful in determining which portions of 
the recorded data are of critical interest and require the most detailed analysis. 

The rms  value of any quantity y, which is a function of time, is the square root 
of the time average of the square of the quantity. Expressed symbolically for a con- 
tinuous function of time, the statements are 

where y = y(t) (meaning that y is a function of time and T is the time interval over 
which the rms  value of y(t) is desired). If, however, the quantity takes on a number 
n of discrete values y., then the correct mathematical expression for the mean- 
square value necessitates a summation rather than an integration procedure. 

J 

To illustrate the development of the rms  value of a quantity which is a continuous 
function of time, consider the periodic signal described by the equation y(t) = A sin t. 
If the peak amplitude A of a sinusoidal signal equals 1 volt, the rms value of the sig- 
nal is 0.707 volt. With random data, however, this generalization is meaningless, and 
the rms  value of a randomly varying voltage is produced only by a full-computation 
procedure. 

The procedure for finding rms  values is one of squaring, integrating, multiplying, 
and taking the square root. In the Wave Analysis Laboratory, this task is performed 
simply by the use of an analog device as illustrated in figure 5. 

The heat generated in the resis- 
tive load is proportional to the true-rms 
input voltage. The low-level dc thermo- 
couple signal is proportional to heat 
generated in the resistive load because 
of predetermined conductive and radi- 
ative character of the oven. This sig- 
nal is amplified because of problems 
in resolving low-level signals, and the 
output meter is calibrated directly, by 
empirical means, in terms of r m s  input. 

I I  '. - 1. 
Reference 

Figure 5. - Analog device for determining 
root-mean-square values. 
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The output of the detector is a dc voltage needed to run the x-y plotter. However, 
the dc voltage is proportional to the rrns value of the input signal voltage. When prop- 
erly calibrated, the x-y plotter describes the correct variance of the rrns value of the 
input signal on the vertical axis of the appropriate graph paper. The horizontal sweep 
rate of the plotter is matched with the time code recorded on a channel of the same 
tape as the input signal. Therefore, the graph of the rrns value of the signal versus 
time offers the chronological history of the signal voltage. 

The rms  over an increment of time also may be obtained from a plot of power- 
spectral density (PSD) versus frequency by finding the a rea  under the curve and taking 
the square root. 

The time-history system is discussed subsequently, with block diagrams in 
figures 6 to 8 outlining the system. 

600 or 300 kHz 

Notes: 

F M  
demu Iti plex 
0- to 4-kHz 

frequency 
range; 

dynamic 
range 50 dB 

from 10 V peak 

Amplif ier 
0 to  20 kHz 

f 
12-channel 

detector 

40-dB range 
from 5-V rms 
av time 0.1 

to 2.5 sec 

2- to 10-kHz 

1. The output of the tape recorder in F M  reproduce w i l l  go directly into 

2. The x-y plotter has sufficient rise-time compatibility for 0.1-second 

3.  The sweep oscillator furnishes a linear ramp. 

the amplifier when the signal i s  not multiplexed. 

averaging. 

Figure 6. - Block diagram, time history. 
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SPECTROGRAMS 

In the Wave Analysis Laboratory, a variety of plots is generated by using fre- 
quency as the independent variable (plotted on the x-axis). Such plots are called 
spectrograms and are used to establish the frequency distribution of some property 
of the dependent variable (in this case, the data signal voltage). (See fig. 9. ) A plot 
of the amplitude of the signal voltage versus frequency is the simplest form of spectro- 
gram. Other spectrograms may have the mean value, the mean-square value, or  the 
rrns value of the signal voltage as the dependent variable. In addition to these dis- 
tinctions, either full-octave or 1/3-octave spectrograms can be plotted in the Wave 
Analysis Laboratory. The latter capability merits more detail. 

1 

w 

> 
Acoustical and vibrational data are often processed by 1/3-octave analysis when 

the acceleration g levels or  the acoustical levels measured by transducers need to be 
compared to a reference level (often one g rms, in the case of vibrational data). A 
logarithmic plot is generally used so that the vertical axis reads decibels as units of 
measure. The following are two of the logarithmic expressions that make this ap- 
proach convenient: 

1. For acoustic level and vibration power level 

dB = 10 log lo (P~Pr )  (9) 

where P1 is the power level under consideration and Pr is the reference power level. 

2. For acceleration level and acoustic sound pressure level 

dB = 20 loglo P / G )  

Here G1 is the rms  acceleration being compared to a known rrns acceleration 
level Gr. 

In 1/3-octave spectrograms, a spectrum analyzer divides the frequency spec- 
trum, in which the data signals may be expected to exist, into 1/3-octave bands by 
using filters with adjustable bandwidths and center frequencies. The signal voltage 
level is sampled in this bandwidth and, by sweeping center frequencies, the spectrum 
analyzer develops a continuous plot of signal level versus frequency. In this proce- 
dure, as in the processing of rms time histories, the rrns of the signal is developed 
by passing the signal through a detector circuit. If linear scale is to be used, the 
dc output from the detector will run the x-y plotter. Logarithmic converters are 
necessary if a log scale (decibels) is desired. Figure 9 is a typical 1/3-octave spec- 
trogram. The system is described in the section of the paper entitled Spectrometer, 
1/3- or  Full-Octave Acoustic Analysis System. 
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THE AUTOCORRELATION FUNCTION 

Another basic capability in the Wave Analysis Laboratory is the development of 
autocorrelation-function plots (autocorrelograms). (See fig. 10. ) The autocorrelation 

Figure 10. - Time and frequency correlation system. 

function of any signal provides a description of the relationship between the values of 
signal data studied at two different instants. If the value of a variable is known at one 
time as y(t), and after a time delay 7 as y(t + T) ,  the autocorrelation between these 
two values of the same signal may be calculated by using the definition 

R (7) = lim $ lT y(t)y(t + 7)dt 
T-a, 

where T is the observation or averaging time. Taking T to infinity to get an exact 
value for R (7) is not possible in practice; however, a sufficiently accurate estimate 
is obtained from 

Y 
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The autocorrelation function is a real, even function of the lag time T. The function 
has a maximum at T = 0 and is symmetrical about this point. The maximum value of 
R (T) is the mean-square value of the variable y(t) as can be seen when T = 0 is 
substituted into equation (11). 

Y 

. 
Ry'O) L T l T y 2 ( t ) d t  

The practical use of the autocorrelation function comes from the autocorrelogram, 
which is obtained by varying the delay time and plotting the dependence of R (T) upon 
7. Correlograms reveal a variety of useful facts about random as well as deterministic 
data. They are often used to complement power spectra in areas where the autocorre- 
lation format is more convenient. For example, the autocorrelation function is a very 
useful device for detecting the presence of periodic signals in a background of random 
data. Also significant is the fact that the autocorrelation function is the inverse 
Fourier transform of the PSD function. Consider, for example, the autocorrelation 
function R (7) for a signal described by y(t) = A sin (ut -E n. 

Y 

(See appendix A. ) 
Y 

If o = 2nf, f = frequency, = phase angle, and A is the peak amplitude of 
the signal, then 

RY(7) M f lT A sin (ut  + fl) * A sin [o(t + T) + fl] dt 

and 

It is clear from this example that the autocorrelation function is an even function, that 
it has a maximum at 7 = 0, that it is a periodic function of T with the same frequency 
as the signal y(t), and that it is independent of phase angle 9. Figure Il(a) is a plot 
of this autocorrelation function. An example at the other extreme is the autocorre- 
lation function for a random signal with uniform energy distribution with respect to 
frequency (hypothetical "white noise"). The autocorrelation function R (T) in this 
case is a Dirac delta function which rises to the mean-square value of the signal at 
T = 0 and is zero for all other values of T. However, a signal of true white noise 
cannot be realized in  practice. The autocorrelogram for narrow-band random noise 
is shown in figure ll(b). Inthis case, R (T) goes to zero for large T. This fact is 
useful in distinguishing narrow-band random noise from random signals which include 

Y 

Y 
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errant sinusoids. All of the autocorrel- 
ograms shown previously could have 
been plotted to include negative values 
of the time lag 7. Since the autocor- 
relation function is an even function, 
such plots always would be symmetri- 
cal about T = 0. 

The analog instruments used in 
the Wave Analysis Laboratory perform 
the mathematical procedures discussed 
previously in developing autocorrelation 
functions which are then plotted, as 
functions of delay time, by an x-y plotter. 
These procedures are outlined by the 
block diagram of figure 12. 

(a) The autocorrelogram of a sinusoid. 

Ry ( 7 )  

(b) Autocorrelogram of narrow-band random noise. 

Figure 11. - Autocorrelation functions. 

Figure 12. - Block diagram of autocorrelation analysis. 

First, the input signal y(t) is delayed by 7 seconds. The delayed sig- 
nal y(t - T )  is multiplied by the value of the signal y(t) and sampled after 7 seconds 
lag time. Finally, the product y(t - T )  y(t) is averaged over the observation time T. 
The average of this product is identical to the average required in the mathematical 
expression 
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THE CROSS-CORRELATION FUNCTION 

The cross-correlation function for random data from two different processes or  
variables illustrates the dependence of the values of one variable upon the values of 
the other variable. For the two time-dependent variables x(t) and y(t), the cross- 
correlation function is a function of the delay o r  lag time T and is defined mathe- 
matically by the equation 

where T is the observation or averaging time, and the variable y(t + T )  is sampled 
T seconds after the variable x(t) is sampled. The value R (7) is real-valued for 

real x(t) and y(t) but is not an even function and need not have its maximum at 
T = 0 as is true with the autocorrelation function. Because it is not possible to aver- 
age over infinite time intervals, the cross-correlation function may be estimated 
as follows 

XY 

A plot of R (7)  versus T is called a cross correlogram and is used in meas- 
XY 

uring time delays, in distinguishing a signal from background noise, and in deter- 
mining the paths of propagation of noise, vibration, and other disturbances. Cross 
correlograms display sharp peaks a t  values of T at which the two variables corre- 

. late. The value of R (7) is zero when x(t) and y(t) are uncorrelated or  if these 
variables are statistically independent. Figure 13(a) shows the cross correlogram in 
such a case. Specifically, the variables a re  a sine wave signal and a wideband random 
signal. The variation of R (0) around zero is attributable to the relatively fast 
sampling time and the relatively short averaging time. The cross correlogram of two 
sets of interrelated signals is given in figure 13(b). Figure 13(b) illustrates the cross 
correlation between two sine waves of the same frequency but of'different amplitudes 
and 90' out of phase. This plot demonstrates the problem worked in appendix B where 
x(t) = A1 sin olt + fll) and y(t) = A2 sin ut + f12 . Here 8, - 8, = 90°, 

A1 = 400 mV, A = 500 mV, and f = 1000 Hz. As predicted by theory, the cross- 
correlation function is periodic with the same frequency as the individual signals. The 
more general problem of appendix B demonstrates that when two signals are completely 
independent, as is true when o # o 1 2' 

XY 

XY 

0 
2 

( 

the cross-correlation function is zero. 
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Delay time T r  

msec 

(a) Cross correlogram of a 1000-Hz sinusoid with wideband random noise. 

I 
I I 1 

\ 
\ 

0.1 msec 

Delay t ime T r  

msec 

(b) Cross correlogram of two 1000-Hz sine waves 90" out of phase. 

Figure 13. - Cross-correlation functions. 
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Measuring time delays and transmission times involves an application of the fact 
that a cross correlogram shows a peak at that value of 7 at which the input signal to 
a linear system correlates with the output signal from the system. The measurement 
of the velocity of sound in an isotropic medium appears to be a simple task when using 
these techniques in a laboratory arrangement as shown In figure 14. 

S pea ker Medium Receiver 

Figure 14. - Measurement of the velocity of sound. 

The signal x(t) at the speaker is delayed by 7 seconds and is cross correlated 
with the signal y(t) at the receiver. The cross correlogram is produced by varying 
7 and shows a peak for R (7) at that value of 7 at which x(t) and y(t) correlate 
again. This value of T equals the time of transmission of sound across the distance d 
between the speaker and the receiver. The familiar equation for velocity v = d/t 
is used to calculate the average velocity of sound in this medium. This procedure 
serves as a very straightforward example of the use of cross correlograms but does 
not always yield reliable results. In the preceding procedure, for example, the fre- 
quency or phase characteristics of the sound wave may be altered by the medium so 
that the output signal does not resemble the input signal well enough for distinct peaks 
in  the correlogram. A precise value of T is not obtainable in this case. 

XY 

The cross -correlation function, when used to distinguish signals from back- 
ground noise, proves itself superior to the autocorrelation function as well as other 
techniques because the signal does not need to be periodic to be detected. By cross 
correlating a stored "pure" version of the known signal with the suspected mixture of 
signal and noise, a more definite verification of the presence of the signal in the mix- 
ture is obtained than through autocorrelation. Cross-correlation techniques offer a 
greater output signal-to-noise ratio than is available by using the autocorrelation 
function. 

Determining the path of propagation of noise or  vibration is another useful capa- 
bility of the cross-correlation function. The path of maximum transmission of noise 
and/or vibration needs to be identified in a variety of situations including spacecraft 
systems, factories, and other structures. Once this path is established, steps may 
be taken to reduce the amount of disturbance transmitted along this path. The cross- 
correlation function lends itself readily to such a problem. 
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Consider the situation illustrated 
in figure 15. A disturbance is generated 
at point A and traverses a barrier to get 
to point B. The barrier offers three 
major paths for the disturbance. To 
establish which of the available paths 
accounts for the most transmission, 
engineers record the input disturb- 
ance x(t) at point A and the output 
disturbance y(t) at point B. 

The cross correlogram x(t) and 
y(t) reveals several peaks of different 
amplitudes all indicating correlation of 
the input and output signal (fig. 16). 
The peak of greatest amplitude is the 
peak corresponding to maximum trans- 
mission . Further correspondence must 
be established between this peak and a 
particular path of propagation. This 
may be done by noting the lag time 
and making certain safe assumptions 
about the relative times of transmission 
for each path. The most limiting fea- 
ture of this application is the necessary 
assumption that the important paths of 
propagation all constitute a linear system. 
In figure 16, such assumptions lead to 
the conclusion that path 3 is the path of 
maximum transmission. 

The block diagram in figure 17 
outlines the steps involved in the devel- 
opment of cross correlograms by ana- 
log instruments. Two different signals, 
x(t) and y(t), are fed into the analyzer. 
One signal, x(t), is delayed by a time T 
to produce x(t - T) which is multiplied 
by the other input signal y(t). This 
product is averaged over the sampling 
time T to produce the cross-correlation 
function R (7). The same clock that 
sweeps the value of T to set the delay 
on x(t - T )  runs the horizontal servos 
on the x-y plotter to produce the graph 
of R (T) versus T. Again, as with 

XY 
the autocorrelation function, the average 

XY 

Figure 15. - The propagation of a disturbance 
through three different paths. 

Rxy( T ) I-..- I I 

Figure 16. - Cross correlogram of the 
input x(t) and the output y(t) of 
the system in figure 15. 

and delay 1 
integrating over 

averaging time T 
generates 
variable 

Figure 17. - Block diagram for 
cross-correlation analysis. 

of the product x(t -T)y(t) over T equals the average of y(t + T)X(t) as required for 
R (7). Figure 18 is a block diagram of the correlation system. 

XY 

22 



c Reference B 

Tape loop 
re c ord e r 

0 to  20 kHz 
40-dB 

dynamic 
range 

Figure 18. - Block diagram of correlation. 

POWER-SPECTRAL DENSITY FUNCTIONS 

The output signals from transducers mounted in a test vehicle contain a great 
quantity of data from the measurement of specific variables during a test. These data 
yield the maximum of useful information when interpreted in the manner which best 
suits the variable under consideration. Time histories, for example, are broadly 
useful as surveys of the behavior of variables for the duration of tests. Frequency 
spectra are appropriate for determining the frequency distribution of the amplitudes 
of signals. Further, probability-density function plots are used to verify that random 
data have normality (that is, a Gaussian-probability-density function) o r  to determine 
which theoretical-probability-distribution function best describes the data. 

The PSD function, which is a continuous function of frequency for random data, 
has been found to offer the most meaningful interpretation of the frequency composition 
of random signals. The PSD function represents the mean-square value of a signal 
voltage, is measured in V /Hz, and is plotted as a function of frequency to yield a 
power spectrum (figs. 19 and 20). The PSD function describes the manner in which 
a density function, such as acoustical or  vibrational energy-density, is distributed 
with respect to frequency. Furthermore, PSD analysis may be used to determine the 
gain factor of the frequency response function from a linear system. Because of the 
close mathematical relation of the PSD function to other important data-interpreting 
functions, the PSD function is a convenient tool in many wave analysis situations. 
Power spectra of signal voltages from transducers measuring such quantities as pres- 
sure, velocity, acceleration, current, or voltage reveal the frequency distribution of 
the energy in the data. Changes in the signal voltages correspond to changes in the 

2 

C orrelator 

0 to 0.17 msec minimum 
0 to 17 msec maximum 
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Figure 19. - Power-spectral density analysis system. 

10 100 1000 
Frequency, Hz 

10 000 

Figure 20. - Typical power spectrum for vibration data from an Apollo mission. 
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variable being measured by the transducer. The PSD function gives the mean-square 
value of these signal voltages and is, therefore, directly proportional to the energy 
(or power per unit of frequency) incident on the transducer. 

For acoustical energy-density, for example, transducers are designed to 
measure acoustical pressure. The PSD function from acoustical tests gives the mean- 
square value of this pressure per unit of frequency (in psi /HZ) and is directly pro- 
portional to the acoustical energy-density. A study of power spectra for random 
acoustical data reveals the frequencies at  which the most acoustical energy was gener- 
ated during the test. Factors known to contribute noise at these frequencies then may 
be established as the major causes of high noise levels. The vertical scale on a PSD 

2 plot may be chosen to read directly in psi /Hz once the correspondence between the 
signal voltage and the acoustical pressure is defined. A more precise treatment of 
the dimensions of energy-density is usually not necessary for a meaningful analysis 
of test results but is easily obtainable if certain constants, such as the density of the 
medium and the velocity of sound in this medium, are known. 

2 
& 

~ 

For vibrational tests, the PSD function gives the results of the monitored 
measurements made by accelerometers mounted on the test vehicle. The read- 
out on the vertical axis of a PSD plot for such tests generally has dimensions of 
g2/Hz (one g = 32 ft/sec2). Figure 20 shows a typical power spectrum for random 
vibrational test data. 

This discussion of the generation of power spectra is brief and leaves many 
questions concerning the production of PSD functions unanswered. The following 
outline shows the mathematical calculation of PSD functions and the manner in which 
analog equipment carries out this calculation. 

The PSD function G (f) for a signal y(t) is defined mathematically by the 
Y 

equation 

' .. 2 
YAf (t,f)dt 

1 1  G (f) = lim lfm -- Af T T-mAf-0 

where yAf(t,f) defines that portion of the signal which is studied in the frequency 
range between f and f + Af and where Af is the frequency interval width and T is 
the averaging time. For real or complex y(t), the PSD function is real and positive. 
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A convenient feature of the PSD function is its relation to the autocorrelation function 
given by the expression 1 

This equation shows that G (f) is the Fourier transform of R (7) and may be 
Y Y 

used to derive the PSD function for the real function y(t) = 2 sin 2nfot. 

In the preceding section, it was shown that the autocorrelation function for the 

cos 2n-f0-r. Using this information with equation (20) A2 sine wave y(t) is R (7) = 

yields 
Y 

- 2n-if-r d-r G y (f) = 2 2n- -2- A2/I cos 2n-fo-re 

Since y(t) is real, equation (21) may be written ; 

The quantity inside the parentheses defines the Dirac delta function 

fore, G (f) = 

6 

is zero except when f - f = 0 in which case the function is equal to unity. There- ( . >  
Y 

Since taking the limits T-o and Af-0 in equation (19) is not possible in 
practice, the PSD function for a stationary random signal y(t) has to be approximated 
as follows 

'Lim, Raymond S.; and Cameron, William D. : Power and Cross-Power 
Spectrum Analysis by Hybrid Computers. NASA TM-X 1324, 1966. 
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In this equation, the limit as Af-0 has been replaced by a finite bandwidth Af, and a 
finite averaging time T (in seconds) produces a useful estimate of G (f). The center 
frequency of the bandwidth is f and, like Af, is measured in hertz. Equation (23) 
shows that the PSD function is approximately equal to the mean-square value of y(t) 
in a bandwidth Af, divided by that bandwidth. 

Y 

The following is a summary of the most significant mathematical properties of 
the PSD function G (f) for the random variable y(t). 

Y 

1. The value G (f) is proportional to the Fourier transform of the autocorre- 
Y 

lation function R (7). 
Y 

2. For a stationary random variable y(t), G (f) may be considered as the rate 
Y 

of change with respect to frequency of the mean-sqUire value of y(t). 
- 

3. The value G (f) is related further to the mean-square value y2 in that 
Y 

the latter is equal to the area under the power spectrum curve. In the frequency 
interval f, - f ,  = Af, the mean-square value is given as follows 

4. If a system has a hear-frequency response function H(II and if a stationary 
random disturbance x(t), having a PSD function Gx(f), is fed into this system, the 

output from the system also will  be a stationary random disturbance y(t) which has a 
PSD function G (f) given as follows 

Y 

The function H(f) is complex and is considered in detail in the following sections. 
Equations (24) and (25) lead to the following relationship 
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These relationships make possible the determination of the gain factor H(f) of the ,  
frequency response function from random data. Establishing the power spectra for-the 
input x(t) and the output y(t) is all that is necessary to solve for I H(f)l. 

Equation (23) offers a reliable estimate of the PSD function as follows 

In developing power spectra, the instruments in the Wave Analysis Laboratory (fig. 19) 
perform a sequence of operations on the input signal y(t) which is stored on magnetic 
tape. Figure 21 diagrammatically outlines this sequence. Figure 22 is a block dia- 
gram of the PSD system. 

0 sci I lator which 
sets the frequency 

Figure 21. - Block diagram of power-spectral density analysis procedure. 
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Figure 22. - Block diagram of power spectral density. 

CROSS - S PECTRAL DENSITY FUNCTIONS 

The cross-spectral density function G (f) for random data from two different 

(7) 
Xy 

processes exists in the same relationship with the cross-correlation function R 
as does the PSD function G (f) with the autocorrelation function R (7). The 
value G (f) is the Fourier transform of R (7). The most general representation 

of the cross-spectral density function is the complex expression 

XY 

Y Y 
Xy XY 

2 

G (f) = C (f) - iQxy(f) 
Xy XY 

where C 

quadrature-spectral density function (fig. 23). These quantities in turn a re  defined 
as follows 

(f) is called the cospectral density function and %(f) is called the 
XY 

2 

'Lim and Cameron, Ibid. 
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Figure 23. - The significance of the phase angle 8 (f). 
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In these expressions, x,(t, f) and yAf(t, f )  represent those portions of the 
signals x(t) and y(t), respectively, which are found in bandwidth Af of center 

~ frequency f .  When shifted in phase by go", yAf(t, f )  represents yAf(t, f) .  An alter- 
nate expression for the cross-spectral density function is in complex polar notation 

h 

where the magnitude of G (f) is 
XY / 

and the phase angle (fig. 23) is 

0 XY (f) = arctan-&xy(f)/C XY (f) (33) 

If the roles of x(t) and y(t) a r e  interchanged, the following relationships hold true 

(34) c (f) = c (f) 
YX XY 

%x(f) = -%y(f) (35) 

(36 1 G (f) = G (f) = G* (-f) 
YX XY XY 

The value G* (f) is the complex conjugate of G 
Xy Xy 

(f) given as follows 
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Finally, the real frequency-dependent variable y '(f), called the coherence 
Xy 

function, is defined by the following equation 

The coherence function equals unity when the input x(t) to a system and the output y(t), 
from the system are "fully coherent" and equals zero either when x(t) and y(t) are 
uncorrelated or  when they are statistically independent. This follows from the inequal- 
ity of equation (37). If the coherence function has a value between zero and unity, this 
may mean that the system is not truly linear, that y(t) is the response to x(t) plus 
other inputs, or  that instrument noise is appearing in the measurement of y(t). The 
coherence function then may be considered a measure of the dependence or  correlation 
of x(t) and y(t). 

At this point, the reader will anticipate the need for estimates of equations (29) 
and (30) because of the familiar, unattainable limits required by these equations. Thus 

x(f, Af)y(f, Af)' 
(Af )T c (f) M 

XY 

and 

(39) 

The cross-spectral density function G (f) is plotted versus frequency f to pro- 
xy 

duce a cross spectrum. This plot is really two separate displays. One plot is of the 
real part, the cospectrum C 
trum % (f), the cross-spectral density function versus frequency. Cross spectra are 

Y 
generated as explained in subsequent paragraphs and illustrated by the block diagram of 
figure 24. 

(f); the other is of the imaginary part, the quadspec- 
XY 

The practical applications of the cross-spectral density function overlap those of 
the cross-correlation function. However, the latter are markedly more convenient o r  
fruitful in several cases: 

1. In measuring time delays 

2. In measuring the frequency response function H(f) for a system 
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x(t1 

yft) A X B  <90"dt 

x(t1 

yft) A X B  <90"dt 

Figure 24. - Cross-spectra block diagram. 

3. In determining the best weighting factor to determine the optimum linear filter 
with reliable characteristics 

Measuring time delays by using the cross-spectral density function is preferred 
over the cross-correlation method because cross spectra provide information on time 
delays as functions of frequency. If 63 (f) gives the phase shift at frequency f pro- 
duced in the cross-spectral density analysis of the input x(t) and the output y(t) of a 
system, then the time delay through the system at frequency f is 7 = 8 (f) 2nf. 

XY 

XY / 
The frequency response function H(f) of a system into which a stationary random 

signal x(t) is fed may be obtained from the relationship 

where Gx(f) is the PSD function of x(t) and G 
function of x(t) and output y(t). 

(f) is the cross-spectral density 
XY 

In designing the optimum linear filter for transmitting input signal x(t) in a pre- 
dictable manner minimizing undesirable noise, both cross spectra and power spectra 
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are used along with equation (41). To determine the mean-square error  Re for this 

system, the coherence function y 2(f), defined previously, is used as follows 
Xy 

Through a procedure outlined in figure 24, cross-spectral density functions are 
developed and plotted as cross spectra in the Wave Analysis Laboratory (figs. 25 and 
26). The analog instruments perform this function in the following sequence: 

1. Filtering x(t) and y(t) separately through identical narrow bandpass filters 
set at center frequency f 

2. Producing an instantaneous product of the two filtered signals xAf (t, f) and 

3. Shifting one filtered signal y,(t,f) out of phase by 90” for use in producing 
a second instantaneous product with x (t, f )  Af 

4. Averaging each product over the sampling time T 

5. Dividing each resulting mean product by Af 

6. Moving the center frequency f to another value to obtain two plots versus 
frequency - one of the real mean products divided by Af, the other of the imaginary 
mean product (the one shifted by 90”) divided by Af 

Figure 25. - Variable band filter system with 
analog-to-digital conversion capability. 
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No. 1 Detector - Filter  

0- to 40-dB 
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Channel 13 

,No. 2 1 
L 

Fi l te r  Detector 4 *Channel l4 I 
Note: 

1. Detectors have selectable averaging times from 0.01 

F i l te r  - 4 sharpener combination has a bandwidth from a 

to 0.50 seconds. Dynamic range is  50 dB 
from a 1-volt input. 

minimum of 1 percent center frequency to 1 
octave and can be adjusted to any center frequency 
from 0 to 20 kHz. The dynamic range is 70 dB 
from 2 1  V ms. 

2 

Figure 26. - Block diagram of parallel filter system. 
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PRESENT USE OF THE WAVE ANALYSIS LABORATORY 

The capabilities of the Wave Analysis Laboratory include those functions which 
are currently in the greatest demand. At present, the instrumentation is capable of 
using such valuable techniques as the following: 

1. The r m s  histories provide further depth studies on behavior of variables. 

2. Spectrograms (1/3- or  full-octave) are helpful in acoustic analysis. 

3. Time and frequency correlations are plotted for comparative analysis. 
c 

4. Power-spectral density functions are used for frequency composition of ran- 
dom signals. 

5. Parallel time histories are used in the study of Doppler radar return signals. 

Through these and other vital tools of wave analysis, NASA programs such a s  Apollo 
are receiving useful assistance from the Wave Analysis Laboratory. 

Time- History System 

The time-history system (fig. 3) has been used in the reduction of Apollo data 
from both flight and ground tests. The flight data have been received from test flights 
at Cape Kennedy and White Sands Missile Range. The ground test reduction has con- 
sisted of Apollo data that have been generated in tests at  White Sands Miss i le  Range, 
at contractor facilities, and at the Manned Spacecraft Center Vibration and Acoustic 
Facility under the guidance of the Structures and Mechanics Division. A typical aceel- 
eration time history of an Apollo flight mission (BP-23) is shown in figure 4. 

The time-history system provides a two- to six-channel simultaneous capability 
for an assortment of time-varying parameters. The number of simultaneous channels 
available depends on the function being analyzed. For r m s  or  mean-square time his- 
tories, six channels are usable. For phase versus frequency or time, two channels 
are usable. For mechanical impedance, transmissibility, or other functions where 
signal division o r  multiplication is required, the number of system components re- 
quired limits the simultaneous capability to three. Division is accomplished by sub- 
tracting log functions. Block diagrams show the system configuration for rms/rms 
time history (fig. 6), phase versus frequency (fig. 7), and mechanical impedance 
(fig. 8). The input-output specifications a r e  included. The diagram in figure 5 is of 
an analog device that detects the ac voltage at the input and converts it to a dc voltage 
proportional to the rrns of the.input ac  voltage. 

Spectrometer, 1/3- or  Full-Octave Acoustic Analysis System 

The Wave Analysis Laboratory has supported the Structures and Mechanics Divi- 
sion at MSC with 1/3-octave reduction of acoustic data generated from tests on the 
Apollo service module, command module, SLA, LM, and other related Apollo tests. 
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The system also has been used in reduction of data taken from scaled down models of 
the Apollo configuration. Figure 9 is a typical spectrogram from acoustic data on 
Apollo ground testing, and figure 10 is a picture of the system along with the correla- 
tion capability. 

Band K 2112 
spectrometer 
0 to 31.5 kc 
in 1/3octaves 
50-dB range 
from 3 V rms  

The spectrometer system consists of a tape loop playback recorder, three spec- 
trometers, and calibration and plotting equipment. 

c 

i 

The spectrometer consists of a set of 1/3-octave filters covering the 0- to 
20-kHz frequency spectrum at standard intervals. By appropriate selection of control 

%settings, the filters may be arranged for full-octave analysis over the same range. A 
detector scans the output of the filters, and the output of the detector is plotted on an 
x-y plotter with synchronized time base after conversion to log scale. The system is 
capable of analyzing three measurements simultaneously. The following block diagram 
defines pertinent specifications of system components. (The level recorder may be re- 
placed with the x-y plotter 2FRA and the Wave Analysis Laboratory time base genera- 
tor. ) 

level 
recorder 
0 to 20 kc 
50-dB range 

Correlation System 

The correlation system (fig. 18) consists of two correlators and associated 
equipment. It is capable of two simultaneous autocorrelations or  six simultaneous 
cross-correlations. The cross-correlation is done in each correlator between one 
reference (input) signal and three delayed or attenuated comparison (output) signals. 

Correlation as defined mathematically consists of multiplying signal A by sig- 
nal B (signal A in autocorrelation) delayed by 7, of integrating this product across 7, 
and of averaging the summation. The correlator accomplishes this by the use of a 
variable delay line as shown in the block diagram. The delay line steps in increments 
between 7 = 0 and T = 17 msec. For each step, the preceding product 
(signal A X signal B delayed by 7) is detected, averaged, and plotted versus 7.  (Plot- 
ter x-axis is synchronized to changes in 7. ) 

All input signals must be between 300 and 700 mV r m s  and have appropriate scale 
factors applied to derive the correct ordinate calibration which is in mean-square 
units. 
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Power-Spectral Density System 

A two-channel system was  procured first and was used in the reduction of 
Gemini flight data. A s  the data from Apollo ground tests increased, four more chan- 
nels were procured. The new system (fig. 19) has been used consistently on data from 
both ground and flight tests such as Little Joe 11, Airframe 002, and many vibration 
and acoustic tests. Figure 20 shows a typical PSD system for an Apollo mission. 

The PSD system has a capability for simultaneous analysis of six PSD measure- 
ments. Frequency resolution may be controlled by bandwidth selections of 2, 5, 10, 
20, o r  50 Hz. One-channel bandwidths of 1 Hz o r  100 Hz are also available. Sweep 
rates and averaging times are selectable for any desirable condition. Loop lengths 
are limited under normal operating conditions to 90 feet of tape or  approximately 
18 seconds at 60 inches per second or  36 seconds at 30 inches per second. For spe- 
cial cases, if required, longer loops may be used by using a different tape recorder. 

,# 

Data analysis is normally accomplished by using 120 degrees of freedom and 
minimum bandwidth a s  specified by requestor to determine loop lengths, sweep rates, 
and averaging times. Unless otherwise specified, where feasible, bandwidth is 
changed at each decade during the frequency sweep to maintain a constant Q when 
using the log-log presentation. The block diagram defining system components and 
pertinent specifications is shown in figure 22. The procedure block diagram in pro- 
ducing a PSD is shown in figure 21. 

Parallel Filter System 

The parallel filter system (fig. 25) has been used in the reduction of data from 
studies conducted on the LM radar system at White Sands and from other tests with 
Apollo applications. 

The parallel filter system was  designed for the reduction of continuous wave 
Doppler radar information. The filter center frequencies and bandwidth are adjusted 
under normal operating conditions to perform time-history studies at selected radar 
look angles. 

The parallel filter system is used for "quick look" real-time spectrum and may 
be used for any narrow band time-history analysis with simultaneous coverage of 0 to 
16 selected bands in the frequency range of 0 to 20 kHz. Figure 26 shows a typical 
layout of the system for radar data analysis and gives pertinent specifications. 

ADDITIONAL CAPABILITIES AND CONCLUDING REMARKS 

At this writing, in addition to the functions of the Wave Analysis Laboratory cur- 
rently in the greatest demand, numerous other capabilities exist, which may be cate- 
gorized as either latent or  potential uses of the laboratory. An example of a latent 
capability of the Wave Analysis Laboratory is the generating of probability -density 
function plots. Such plots are valuable in determining the type of probability distribu- 
tion (in the time domain) that a set of random data may have. This knowledge is 
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necessary so that the validity of the techniques reviewed previously can be established 
for this particular set of data. It is generally assumed, for example, that most ran- 
dom test data have normal or  Gaussian-probability distributions. This is not always 
true,' however, and sometimes this assumption is totally unacceptable. 

A potential capability of the facility is the processing of radio-frequency reflec- 
tivity data. As a part of the answer to the challenge of manned and unmanned explora- 
tions of the Moon, Mars,  and the other planets, NASA is developing methods for 
obtaining highly informative data from reflected radar signals from the surfaces of 
these planets. In the Wave Analysis Laboratory, systems utilizing prior capabilities 
and new techniques are being developed for this new and challenging type of data. Many 
new terms such as l1 sign sensing' l are being included in the vocabulary of wave analy- 
sis personnel. New concepts for obtaining the maximum usable information from re- 
flectivity data currently are being developed and tested. 

* 

Manned Spacecraft Center 
National Aeronautics and Space Administration 

Houston, Texas, March 20, 1968 
914-50-50-89-72 

39 



APPENDIX A 

THE AUTOCORRELATION FUNCTION FOR y(t) = A sin (ut + la) 

In general, the autocorrelatidn function is defined a s  

T 
R (7) E lim f y(t)y(t + T)dt 

T- Y 

In this particular case 

sin A sin B =;[cos (A - B) - cos (A + B)] 

Therefore 

cos UT dt - lim - A2 R (7) = lim - 2T iT COS [ 2 ( W t  + (a) + WT]dt 
T-oo T-* 

= lirn - A2 T cos UT - lirn - A2 {cos  sin 2(wT + la) - sin 2fl 40T T-* 2T T--* 

+ sin UT[COS (UT -k @2 - cos 2a) 

as  T - * ,  -- 0, which results in T 

A2 R (7) = COS UT 
Y 

(A4 1 
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APPENDIX B 

THE CROSS-CORRELATION FUNCTION 

FOR TWO SINUSOLDAL VARIABLES 

Case 1 

x The general case where x(t) and y(t) have different frequencies, amplitudes, 
and phase angles 

x(t) = A1 sin wlt + g ( 
y(t) = A2 sin w2t + fJ ( 

R ( T ) =  lim 
xy T-co 

A A  
- lim glT cos t(wl + w + gl + g2 + w 

T-.a 2) 
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1 From the last equation, it is evident that as T - 00, - 0. Therefore 

when w # w 1 2‘ 

Case 2 

In this case, x(t) and y(t) have the same frequency w. 

x(t) = A1 sin w t  + 8 

y(t) = A2 sin (Ut + g2) 
( 1) 

1 
T a s  T -co, - -c 0. Therefore 

A A  
R (7) =- COS @T + g2 - PI) Xy 2 

J 
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